Astronomy, Stellar, Planetary News
STELLAR CHEMISTRY
Researchers uncover dark matter dominance in early universe galaxies
illustration only
Researchers uncover dark matter dominance in early universe galaxies
by Riko Seibo
Tokyo, Japan (SPX) Feb 12, 2025

An international team of scientists has discovered that dark matter significantly influenced the halos of two supermassive black holes in galaxies located approximately 13 billion light years away. Their findings, published in The Astrophysical Journal on February 5, provide fresh insights into the role of dark matter in the early universe and its connection to the evolution of galaxies over time.

The study builds on the pioneering work of astronomer Vera Rubin, who in the 1970s observed that the outer regions of nearby galaxies were rotating faster than expected, leading to the identification of a flat rotation curve. Under Newtonian mechanics, the velocity of objects farther from a galaxy's center should decrease. However, Rubin's observations suggested the presence of an invisible mass-dark matter-encompassing galaxies in a halo, influencing their rotation speeds. Despite its fundamental role in cosmology, the formation and distribution of dark matter in the distant universe remain largely unexplored.

Led by visiting researcher Qinyue Fei of the University of Tokyo's Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI) and graduate student at Peking University, the research team included Kavli IPMU Professor John Silverman, University of Texas at Austin researcher Dr. Seiji Fujimoto, and Peking University's Kavli Institute for Astronomy and Astrophysics Associate Professor Ran Wang. The team investigated the dark matter content surrounding two supermassive black holes in galaxies from the early universe.

"Vera Rubin provided the first evidence for dark matter using rotation curves in nearby galaxies. We are applying the same approach, but to galaxies in the early universe," Silverman explained.

Utilizing data from the Atacama Large Millimeter/submillimeter Array (ALMA) and observations of the ionized carbon (C+) emission line, the researchers analyzed the gas dynamics in two quasar host galaxies at redshift 6. By studying the galaxies' rotation curves, they determined that dark matter constituted around 60% of the total mass.

The velocity distribution within these galaxies was examined through shifts in gas motion, with blue-shifted gas moving toward the observers and red-shifted gas moving away. Previous studies suggested that galaxies from this era exhibited declining rotation curves at their outskirts, implying a lower presence of dark matter. However, the data gathered by Fei and Silverman's team demonstrated a flat rotation curve, resembling those found in massive disk galaxies near Earth. This indicates a greater proportion of dark matter was needed to account for the high observed velocities.

These findings offer a deeper understanding of the complex relationship between dark matter and supermassive black holes, contributing to broader research on galaxy formation and evolution from the universe's infancy to the present day.

Research Report:Assessing the dark matter content of two quasar host galaxies at z~6 through gas kinematics

Related Links
Kavli Institute for the Physics and Mathematics of the Universe
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
New method employs atomic clocks and lasers to probe dark matter
Brisbane, Australia (SPX) Feb 12, 2025
A team of international researchers has introduced an innovative approach to detecting dark matter, leveraging atomic clocks and ultra-stable lasers to investigate the enigmatic substance believed to hold galaxies together. University of Queensland PhD student Ashlee Caddell co-led the study in collaboration with Germany's Physikalisch-Technische Bundesanstalt (PTB), using high-precision atomic clocks and cavity-stabilized lasers to search for dark matter in an unprecedented way. "Despite ex ... read more

STELLAR CHEMISTRY
The PI's Perspective: A New Mission Update for the New Year

NASA's Webb Uncovers Ancient Features of Trans-Neptunian Objects

New Study Suggests Trench-Like Features on Uranus' Moon Ariel May Be Windows to Its Interior

NASA Juno Mission Discovers Record-Breaking Volcanic Activity on Io

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Researchers confirm existence of habitable zone exoplanet

UC Irvine study explores habitability of exoplanets orbiting white dwarf stars

Study suggests intelligent life may be inevitable

How Early Earth's Environmental Cycles Shaped Molecular Evolution

STELLAR CHEMISTRY
China unveils innovative dual-mode robot for planetary exploration

Perseverance Rover's Groundbreaking Soil and Rock Samples

Sols 4443-4444: Four Fours for February

Texas A&M scholar secures NASA funding to examine Martian dune dynamics

STELLAR CHEMISTRY
NASA's Mini Rovers Ready for Lunar Expedition

How NASA's Lunar Trailblazer Will Chart a Unique Path to the Moon

NASA Advances Lunar Exploration with Polar Ice Mining Experiment

Lunar Space Station Module Prepares for US Transport Ahead of Artemis IV

STELLAR CHEMISTRY
Brown astronomers develop innovative method to filter interference in radio telescopes

Redwire Secures ESA Contract to Develop Next Dark Matter Mission Concept

Temperamental Stars Distort Observations of Distant Exoplanets

Researchers uncover dark matter dominance in early universe galaxies

STELLAR CHEMISTRY
Earth's Inner Core May Be Less Solid Than Previously Believed

Multinational research project shows how life on Earth can be measured from space

BlackSky Secures Multi-Year Contracts to Enhance India's Earth Observation Capabilities

Sentinel-1C Proves Capability to Monitor Land Deformation with Precision

STELLAR CHEMISTRY
Do look up: How Earth can defend itself against asteroid

Want some salt with that

'City killer' asteroid now has 3.1% chance of hitting Earth: NASA

A 'city-killer' asteroid might hit Earth -- how worried should we be?

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.