Astronomy, Stellar, Planetary News
TIME AND SPACE
Swift studies gas-churning monster black holes
illustration only
Swift studies gas-churning monster black holes
by Jeanette Kazmierczak for GSFC News
Greenbelt MD (SPX) Nov 14, 2024

Scientists using observations from NASA's Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair of monster black holes disrupting a cloud of gas in the center of a galaxy.

"It's a very weird event, called AT 2021hdr, that keeps recurring every few months," said Lorena Hernandez-Garcia, an astrophysicist at the Millennium Institute of Astrophysics, the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, and University of Valparaiso in Chile. "We think that a gas cloud engulfed the black holes. As they orbit each other, the black holes interact with the cloud, perturbing and consuming its gas. This produces an oscillating pattern in the light from the system."

A paper about AT 2021hdr, led by Hernandez-Garcia, was published Nov. 13 in the journal Astronomy and Astrophysics.

The dual black holes are in the center of a galaxy called 2MASX J21240027+3409114, located 1 billion light-years away in the northern constellation Cygnus. The pair are about 16 billion miles (26 billion kilometers) apart, close enough that light only takes a day to travel between them. Together they contain 40 million times the Sun's mass.

Scientists estimate the black holes complete an orbit every 130 days and will collide and merge in approximately 70,000 years.

AT 2021hdr was first spotted in March 2021 by the Caltech-led ZTF (Zwicky Transient Facility) at the Palomar Observatory in California. It was flagged as a potentially interesting source by ALeRCE (Automatic Learning for the Rapid Classification of Events). This multidisciplinary team combines artificial intelligence tools with human expertise to report events in the night sky to the astronomical community using the mountains of data collected by survey programs like ZTF.

"Although this flare was originally thought to be a supernova, outbursts in 2022 made us think of other explanations," said co-author Alejandra Munoz-Arancibia, an ALeRCE team member and astrophysicist at the Millennium Institute of Astrophysics and the Center for Mathematical Modeling at the University of Chile. "Each subsequent event has helped us refine our model of what's going on in the system."

Since the first flare, ZTF has detected outbursts from AT 2021hdr every 60 to 90 days.

Hernandez-Garcia and her team have been observing the source with Swift since November 2022. Swift helped them determine that the binary produces oscillations in ultraviolet and X-ray light on the same time scales as ZTF sees them in the visible range.

The researchers conducted a Goldilocks-type elimination of different models to explain what they saw in the data.

Initially, they thought the signal could be the byproduct of normal activity in the galactic center. Then they considered whether a tidal disruption event - the destruction of a star that wandered too close to one of the black holes - could be the cause.

Finally, they settled on another possibility, the tidal disruption of a gas cloud, one that was bigger than the binary itself. When the cloud encountered the black holes, gravity ripped it apart, forming filaments around the pair, and friction started to heat it. The gas got particularly dense and hot close to the black holes. As the binary orbits, the complex interplay of forces ejects some of the gas from the system on each rotation. These interactions produce the fluctuating light Swift and ZTF observe.

Hernandez-Garcia and her team plan to continue observations of AT 2021hdr to better understand the system and improve their models. They're also interested in studying its home galaxy, which is currently merging with another one nearby - an event first reported in their paper.

"As Swift approaches its 20th anniversary, it's incredible to see all the new science it's still helping the community accomplish," said S. Bradley Cenko, Swift's principal investigator at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "There's still so much it has left to teach us about our ever-changing cosmos."

NASA's missions are part of a growing, worldwide network watching for changes in the sky to solve mysteries of how the universe works.

Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.

Related Links
Millennium Institute of Astrophysics
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Astrophysicists explore light echoes to study black holes
Los Angeles CA (SPX) Nov 08, 2024
A research team led by astrophysicists from the Institute for Advanced Study has introduced a groundbreaking technique to identify light echoes around black holes. This approach, which enables precise measurements of a black hole's mass and spin, offers a new avenue beyond traditional methods to study these cosmic phenomena. Published in 'The Astrophysical Journal Letters', the study outlines a method leveraging gravitational lensing, a process where light bends around black holes due to their imm ... read more

TIME AND SPACE
Uranus moon Miranda may hold a hidden ocean below its surface

NASA and SpaceX Set for Europa Clipper Launch on October 14

NASA probe Europa Clipper lifts off for Jupiter's icy moon

Is life possible on a Jupiter moon? NASA goes to investigate

TIME AND SPACE
TIME AND SPACE
Scientists build spectral library to identify water on exoplanets

A new model estimates odds of intelligent life across universes

On the origin of life and the formation of cell membranes

Optimal Learning Rates Revealed in New Study on Adaptation

TIME AND SPACE
Peculiar Pale Pebbles

Meteorite contains evidence of liquid water on Mars 742M years ago

Have We Been Searching for Life on Mars in the Wrong Way

Off-the-shelf thermoelectric generators could enable CO2 conversion on Mars

TIME AND SPACE
Denmark becomes 48th nation to sign Artemis Accords for space exploration

South Pole Safety: NASA seeks innovative Lunar rescue solutions

Sidus Space chosen to build Lunar Data Storage Spacecraft for Lonestar

China tests building Moon base with lunar soil bricks

TIME AND SPACE
Telescope for NASA's Roman Mission complete, delivered to Goddard

Hubble observes effects of Large Magellanic Cloud's Encounter with the Milky Way

Breakthrough in photonic time crystals may transform light control technologies

Astronomers challenge traditional galaxy formation theories

TIME AND SPACE
China launches new set of remote-sensing satellites

Microplastics influence cloud formation, potentially shaping weather and climate

UChicago scientist crafts new model to enhance forecasting of atmospheric rivers

Satellite imagery offers a way to shield coastal forests from climate impacts

TIME AND SPACE
Ion dynamics examined as comet 67P awakens from dormancy

NEOWISE concludes mission with re-entry but data continues to fuel discovery

Taurid meteor shower to reach peak visibility

Illuminating ancient origins of 4BN year-old Asteroid Ryugu

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.