Astronomy, Stellar, Planetary News
TIME AND SPACE
Astronomers catch unprecedented features at brink of active black hole
illustration only
Astronomers catch unprecedented features at brink of active black hole
by Francis Reddy for GSFC News
Greenbelt MD (SPX) Jan 15, 2025

International teams of astronomers monitoring a supermassive black hole in the heart of a distant galaxy have detected features never seen before using data from NASA missions and other facilities. The features include the launch of a plasma jet moving at nearly one-third the speed of light and unusual, rapid X-ray fluctuations likely arising from near the very edge of the black hole.

The source is 1ES 1927+654, a galaxy located about 270 million light-years away in the constellation Draco. It harbors a central black hole with a mass equivalent to about 1.4 million Suns.

"In 2018, the black hole began changing its properties right before our eyes, with a major optical, ultraviolet, and X-ray outburst," said Eileen Meyer, an associate professor at UMBC (University of Maryland Baltimore County). "Many teams have been keeping a close eye on it ever since."

She presented her team's findings at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. A paper led by Meyer describing the radio results was published Jan. 13 in The Astrophysical Journal Letters.

After the outburst, the black hole appeared to return to a quiet state, with a lull in activity for nearly a year. But by April 2023, a team led by Sibasish Laha at UMBC and NASA's Goddard Space Flight Center in Greenbelt, Maryland, had noted a steady, months-long increase in low-energy X-rays in measurements by NASA's Neil Gehrels Swift Observatory and NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station. This monitoring program, which also includes observations from NASA's NuSTAR (Nuclear Spectroscopic Telescope Array) and ESA's (European Space Agency) XMM-Newton mission, continues.

The increase in X-rays triggered the UMBC team to make new radio observations, which indicated a strong and highly unusual radio flare was underway. The scientists then began intensive observations using the NRAO's (National Radio Astronomy Observatory) VLBA (Very Long Baseline Array) and other facilities. The VLBA, a network of radio telescopes spread across the U.S., combines signals from individual dishes to create what amounts to a powerful, high-resolution radio camera. This allows the VLBA to detect features less than a light-year across at 1ES 1927+654's distance.

Radio data from February, April, and May 2024 reveals what appear to be jets of ionized gas, or plasma, extending from either side of the black hole, with a total size of about half a light-year. Astronomers have long puzzled over why only a fraction of monster black holes produce powerful plasma jets, and these observations may provide critical clues.

"The launch of a black hole jet has never been observed before in real time," Meyer noted. "We think the outflow began earlier, when the X-rays increased prior to the radio flare, and the jet was screened from our view by hot gas until it broke out early last year."

A paper exploring that possibility, led by Laha, is under review at The Astrophysical Journal. Both Meyer and Megan Masterson, a doctoral candidate at the Massachusetts Institute of Technology in Cambridge who also presented at the meeting, are co-authors.

Using XMM-Newton observations, Masterson found that the black hole exhibited extremely rapid X-ray variations between July 2022 and March 2024. During this period, the X-ray brightness repeatedly rose and fell by 10% every few minutes. Such changes, called millihertz quasiperiodic oscillations, are difficult to detect around supermassive black holes and have been observed in only a handful of systems to date.

"One way to produce these oscillations is with an object orbiting within the black hole's accretion disk. In this scenario, each rise and fall of the X-rays represents one orbital cycle," Masterson said.

If the fluctuations were caused by an orbiting mass, then the period would shorten as the object fell ever closer to the black hole's event horizon, the point of no return. Orbiting masses generate ripples in space-time called gravitational waves. These waves drain away orbital energy, bringing the object closer to the black hole, increasing its speed, and shortening its orbital period.

Over two years, the fluctuation period dropped from 18 minutes to just 7 - the first-ever measurement of its kind around a supermassive black hole. If this represented an orbiting object, it was now moving at half the speed of light. Then something unexpected happened - the fluctuation period stabilized.

"We were shocked by this at first," Masterson explained. "But we realized that as the object moved closer to the black hole, its strong gravitational pull could begin to strip matter from the companion. This mass loss could offset the energy removed by gravitational waves, halting the companion's inward motion."

So what could this companion be? A small black hole would plunge straight in, and a normal star would quickly be torn apart by the tidal forces near the monster black hole. But the team found that a low-mass white dwarf - a stellar remnant about as large as Earth - could remain intact close to the black hole's event horizon while shedding some of its matter. A paper led by Masterson summarizing these results will appear in the Feb. 13 edition of the journal Nature.

This model makes a key prediction, Masterson notes. If the black hole does have a white dwarf companion, the gravitational waves it produces will be detectable by LISA (Laser Interferometer Space Antenna), an ESA mission in partnership with NASA that is expected to launch in the next decade.

Research Report:Millihertz Oscillations Near the Innermost Orbit of a Supermassive Black Hole

Related Links
National Radio Astronomy Observatory
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
XMM-Newton detects peculiar black hole X-ray patterns
Paris, France (SPX) Jan 14, 2025
The European Space Agency's XMM-Newton observatory has revealed unexpected X-ray oscillations emanating from the edge of a supermassive black hole in a nearby galaxy. These findings challenge existing theories of black hole accretion and offer intriguing clues about potential gravitational wave sources for ESA's upcoming LISA mission. XMM-Newton's observations highlight the complexities of black hole feeding mechanisms. Predicted by Einstein's theory of general relativity, black holes are immense ... read more

TIME AND SPACE
SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Citizen scientists help decipher Jupiter's cloud composition

Capture theory unveils how Pluto and Charon formed as a binary system

Texas A and M researchers illuminate the mysteries of icy ocean worlds

TIME AND SPACE
TIME AND SPACE
Dormancy as a survival strategy for life's origins

SETI Forward celebrates the future of cosmic exploration

An autonomous strategy for life detection on icy worlds using Exo-AUV

Living in the deep, dark, slow lane: Insights from the first global appraisal of microbiomes in Earth's subsurface environments

TIME AND SPACE
Samples from Mars to reveal planet's evolutionary secrets

NASA to evaluate dual strategies for bringing Mars samples back to Earth

NASA eyes SpaceX, Blue Origin to cut Mars rock retrieval costs

January's Night Sky Notes: The Red Planet

TIME AND SPACE
Nokia's cellular network to enable Lunar mission connectivity as Intuitive Machines completes integration

NASA and Italian Space Agency test future Lunar navigation technology

Private US, Japanese lunar landers launch on single rocket

Firefly Aerospace's Blue Ghost Mission 1 begins transit to the Moon

TIME AND SPACE
Gaia concludes Milky Way mapping efforts

Robotic SDSS telescopes revolutionize mapping the Milky Way

Prime focus spectrograph on Subaru Telescope ready for science operations

NASA joins telescope instruments to Roman spacecraft

TIME AND SPACE
Transforming earth observation data into water security solutions for Africa

New dataset illuminates Earth's atmosphere from ground level to space

Planet expands high-resolution imaging with Pelican-2 and SuperDoves

Dragonfly Aerospace partners with LatConnect 60 for advanced SWIR imaging satellites

TIME AND SPACE
Quadrantid Meteor Shower offers 'perfect New Year treat'

UCF scientists examine unique asteroid-comet hybrid

Lab experiments explore origins of gullies on Asteroid Vesta

Webb Telescope detects new population of small Main Belt Asteroids

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.